论文标题

连续的CM常规性和通用消失

Continuous CM-regularity and generic vanishing

论文作者

Raychaudhury, Debaditya

论文摘要

我们研究了极化不规则的平滑射射品种$(x,\ mathcal {o} _x(1))$的无扭转相干滑轮的连续CM常规性及其与通用消失理论的关系。 Mustopa引入了Castelnuovo-Mumford规律性的这种连续变体,他提出了一个问题,是否连续$ 1 $ 1 $ regular $ 1 $ r的$ \ Mathcal {f} $是GV。在这里,我们在许多对$(x,\ mathcal {o} _x(1))$的肯定中回答这个问题,其中包括任何两极分化的Abelian品种的情况。此外,对于这些对,我们表明,如果$ \ Mathcal {f} $连续$ k $ - 对于某些整数$ 1 \ leq k \ leq \ leq \ dim x $,则$ \ nathcal {f} $是GV $ _ { - (K-1)} $ Sheaf。此外,我们将连续CM定期的概念扩展到$ \ Mathbb {q} $ - 在两极分化的Abelian品种上的扭曲捆绑包上的真实值函数$(x,x,\ mathcal {o} _x(1))$,我们表明该功能可以在$ n^1(x)$} $ n^$ n^$ {c} $ {c} $ {r {r {r {我们还为$ \ Mathcal {o} _ {\ Mathbb {p}(\ Mathcal {e})}(1)$ on $ \ Mathbb {p}(\ Mathcal {e})$ on $ 0 $ 0 $ regular bundle $ on pollious oon o an}提供了$ \ mathcal {o} _ {\ mathbb {p}(\ Mathcal {e})}(1)$ oon $ \ mathbb {p}(\ Mathcal {e})$ on $ natcal {e})$在$ \ mathcal {e})上提供结果的结果后果。特别是,我们表明$ \ MATHCAL {O} _ {\ MATHBB {p}(\ Mathcal {e})}(1)$如果$ \ \ Mathcal {O} _x(O} _x(1)$ in $ n^1(x)$(x)$(x)$(x)$(x)$(x)$(x)$(x)$(x)$(x)$(x)$(x)$(x)$(x 1(x)$,则满足$ n_p $属性。 $ \ frac {1} {p+2} $。该结果是使用Atsushi Ito编写的附录中的定理获得的。

We study the continuous CM-regularity of torsion-free coherent sheaves on polarized irregular smooth projective varieties $(X,\mathcal{O}_X(1))$, and its relation with the theory of generic vanishing. This continuous variant of the Castelnuovo-Mumford regularity was introduced by Mustopa, and he raised the question whether a continuously $1$-regular such sheaf $\mathcal{F}$ is GV. Here we answer the question in the affirmative for many pairs $(X,\mathcal{O}_X(1))$ which includes the case of any polarized abelian variety. Moreover, for these pairs, we show that if $\mathcal{F}$ is continuously $k$-regular for some integer $1\leq k\leq \dim X$, then $\mathcal{F}$ is a GV$_{-(k-1)}$ sheaf. Further, we extend the notion of continuous CM-regularity to a real valued function on the $\mathbb{Q}$-twisted bundles on polarized abelian varieties $(X,\mathcal{O}_X(1))$, and we show that this function can be extended to a continuous function on $N^1(X)_{\mathbb{R}}$. We also provide syzygetic consequences of our results for $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ on $\mathbb{P}(\mathcal{E})$ associated to a $0$-regular bundle $\mathcal{E}$ on polarized abelian varieties. In particular, we show that $\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ satisfies $N_p$ property if the base-point freeness threshold of the class of $\mathcal{O}_X(1)$ in $N^1(X)$ is less than $\frac{1}{p+2}$. This result is obtained using a theorem in the Appendix written by Atsushi Ito.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源