论文标题
hartle-hawking波函数的新型现象
Novel phenomena of the Hartle-Hawking wave function
论文作者
论文摘要
我们通过数值求解$ o(4)$ - 对称性并将hartle-hawking波函数作为边界条件来求解方程,从而在惠勒 - 杜特方程的解决方案中找到了一种新颖的现象。如预期的那样,在慢速限制中,数值解给出了最大的陡度,它描述了宇宙初始条件的概率分布。概率与欧几里得计算一致,尽管详细概率计算存在新的差异,但波函数的总体形状与分析近似相兼容。我们的方法从波函数的角度给出了不可接受的波函数的另一种观点。讨论了此波功能的可能解释和概念问题。
We find a novel phenomenon in the solution to the Wheeler-DeWitt equation by solving numerically the equation assuming $O(4)$-symmetry and imposing the Hartle-Hawking wave function as a boundary condition. In the slow-roll limit, as expected, the numerical solution gives the most dominant steepest-descent that describes the probability distribution for the initial condition of a universe. The probability is consistent with the Euclidean computations, and the overall shape of the wave function is compatible with analytical approximations, although there exist novel differences in the detailed probability computation. Our approach gives an alternative point of view of the no-boundary wave function from the wave function point of view. Possible interpretations and conceptual issues of this wave function are discussed.