论文标题
量子Susy Operads
Quantum SUSY operads
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In a recent paper, we described a lifting of coordinate rings of groups, loops, quantum groups, etc. to the categoric setup of operads. In most examples of that paper, these rings are non--commutative. Quantum physics of the XX--th century added one more, quite nontrivial degree of freedom: coordinates might become fermionic. In their classical version, the fermionic coordinates anti--commute, and the resulting rings are called supersymmetric, or SUSY, ones. In this paper, we try to lift operads involving fermionic coordinates to quantum operads. We have to restrict ourselves by lifting operads of supersymmetric rings. We also show that $1D$ supersymmetric algebras have an operad structure, and we analyze their symmetries, through their relation to Adinkra graphs, dessins and codes.