论文标题
$ k_ {5} $的边缘可选性的注释 - 次要免费图形
A note on the edge choosability of $K_{5}$-minor free graphs
论文作者
论文摘要
对于平面图$ G $,Borodin表示,如果$ g $(δ+1)$ - EDGE-CHOOS-CHOOS-CHOOS-CHOOS-CHOOS-CHOOS-CHOOS-CHOS-GEQ9 $和后来的Bonamy表明,$ G $是$ 9 $ -EDGE-CHOOS-CHOOS-CHOOS-CHO-CHO-CHO-Δ= 8 $。同时,Borodin等人。证明$ g $是$δ$ - 边缘cho-geq12 $。在论文中,我们将这些结果扩展到$ k_5 $ -minor的免费图。
For a planar graph $G$, Borodin stated that $G$ is $(Δ+1)$-edge-choosable if $Δ\geq9$ and later Bonamy showed that $G$ is $9$-edge-choosable if $Δ=8$. At the same time, Borodin et al. proved that $G$ is $Δ$-edge-choosable if $Δ\geq12$. In the paper, we extend these results to $K_5$-minor free graphs.