论文标题
天体手性代数,颜色界面双重性和整合性
Celestial chiral algebras, colour-kinematics duality and integrability
论文作者
论文摘要
我们研究了使用自动划分的Yang-Mills理论和自动重力的轻度表格的天体手性代数出现在天体全息图中,并还探索了后者的变形。最近讨论的$ w_ {1+ \ infty} $代数是自dual重力的,这是由于区域保存的差异性代数的软膨胀而产生,该代数在颜色 - 基因学双重性和自我二线关系之间扮演了运动代数的作用。 $ w_ {1+ \ infty} $ $ W_ {1+ \ infty} $的变形来自自偶重力的摩尔变形。该理论被解释为受约束的高旋转重力,其中该场是由重力构成完全约束的高旋转组分的塔。在所有这些理论中,操作员产品扩展的手性结构均表现出颜色 - 基因二元性:隐式“左代数”是自动偶联运动代数,而“右代数”提供了操作员产品的结构常数,以确保其在树层处的关联性。在病房猜想的散射幅度版本中,左代数确保了这种类型的理论的经典整合性。特别是,它通过双副本实施了树级振幅的消失。
We study celestial chiral algebras appearing in celestial holography, using the light-cone gauge formulation of self-dual Yang-Mills theory and self-dual gravity, and explore also a deformation of the latter. The recently discussed $w_{1+\infty}$ algebra in self-dual gravity arises from the soft expansion of an area-preserving diffeomorphism algebra, which plays the role of the kinematic algebra in the colour-kinematics duality and the double copy relation between the self-dual theories. The $W_{1+\infty}$ deformation of $w_{1+\infty}$ arises from a Moyal deformation of self-dual gravity. This theory is interpreted as a constrained chiral higher-spin gravity, where the field is a tower of higher-spin components fully constrained by the graviton component. In all these theories, the chiral structure of the operator-product expansion exhibits the colour-kinematics duality: the implicit `left algebra' is the self-dual kinematic algebra, while the `right algebra' provides the structure constants of the operator-product expansion, ensuring its associativity at tree level. In a scattering amplitudes version of the Ward conjecture, the left algebra ensures the classical integrability of this type of theories. In particular, it enforces the vanishing of the tree-level amplitudes via the double copy.