论文标题
椭圆模块图表格II:迭代积分
Elliptic modular graph forms II: Iterated integrals
论文作者
论文摘要
椭圆形模块化图(EMGF)是非形态模块化形式,具体取决于圆环的模块化参数$τ$,并标记为$ z $。传统上,EMGF是由封闭弦属属的世界表图上离散的动量上的嵌套晶格总和构建的。在这项工作中,我们开发了将EMGF的晶格和晶状体实现的方法通过模块化参数$τ$转换为迭代积分的方法,并特别关注一个标记点的情况。这种迭代的综合表示表现出EMGF之间的代数和差异关系及其退化限制$τ\ rightarrow i \ infty $。从数学的角度来看,我们的结果在模块化形式及其复杂的共轭方面,在任意深度的单值椭圆形的椭圆形多层次的具体实现。 EMGF在固定模块化和先验权重上的基础维度来自迭代积分的简单计数以及Tsunogai的推导代数的概括。
Elliptic modular graph forms (eMGFs) are non-holomorphic modular forms depending on a modular parameter $τ$ of a torus and marked points $z$ thereon. Traditionally, eMGFs are constructed from nested lattice sums over the discrete momenta on the worldsheet torus in closed-string genus-one amplitudes. In this work, we develop methods to translate the lattice-sum realization of eMGFs into iterated integrals over modular parameters $τ$ of the torus with particular focus on cases with one marked point. Such iterated-integral representations manifest algebraic and differential relations among eMGFs and their degeneration limit $τ\rightarrow i\infty$. From a mathematical point of view, our results yield concrete realizations of single-valued elliptic polylogarithms at arbitrary depth in terms of meromorphic iterated integrals over modular forms and their complex conjugates. The basis dimensions of eMGFs at fixed modular and transcendental weights are derived from a simple counting of iterated integrals and a generalization of Tsunogai's derivation algebra.