论文标题

优化的人工神经网络和大脑中的不同光谱表示

Different Spectral Representations in Optimized Artificial Neural Networks and Brains

论文作者

Gerum, Richard C., Pirlot, Cassidy, Fyshe, Alona, Zylberberg, Joel

论文摘要

最近的研究表明,与哺乳动物视觉皮层的光谱特性相匹配的人工神经网络(ANN) - 即,与那些没有那些没有的人相比,神经活动协方差矩阵的$ \ sim 1/n $ eigenspectrum - 实现对对抗性攻击的更高对象识别性能和对对抗性攻击的稳健性。然而,据我们所知,以前没有系统探讨修改ANN光谱属性如何影响性能。为了填补这一空白,我们对频谱正则化器进行了系统的搜索,迫使Ann的特征范围遵循$ 1/n^α$功率定律,具有不同的指数$α$。我们发现,较大的力量(大约2--3)可以提高验证精度,并对对浓缩网络的对抗性攻击更加鲁棒。这个令人惊讶的发现应用于浅网和深网,它推翻了这样的观念,即脑样频谱(对应于$α\ sim 1 $)始终优化ANN性能和/或鲁棒性。对于卷积网络,最佳$α$值取决于任务复杂性和评估度量:较低的$α$值优化验证精度和对对抗性攻击的稳健性,用于执行简单对象识别任务的网络(对手写数字的MNIST图像进行分类);对于更复杂的任务(对CIFAR-10自然图像进行分类),我们发现较低的$α$值优化验证精度,而较高的$α$值优化的对抗性鲁棒性。这些结果具有两个主要影响。首先,他们对脑样光谱特性($α\ sim 1 $)\ emph {始终}优化ANN性能的观念提出了怀疑。其次,它们证明了微调光谱正规化器优化所选设计度量的潜力,即准确性和/或鲁棒性。

Recent studies suggest that artificial neural networks (ANNs) that match the spectral properties of the mammalian visual cortex -- namely, the $\sim 1/n$ eigenspectrum of the covariance matrix of neural activities -- achieve higher object recognition performance and robustness to adversarial attacks than those that do not. To our knowledge, however, no previous work systematically explored how modifying the ANN's spectral properties affects performance. To fill this gap, we performed a systematic search over spectral regularizers, forcing the ANN's eigenspectrum to follow $1/n^α$ power laws with different exponents $α$. We found that larger powers (around 2--3) lead to better validation accuracy and more robustness to adversarial attacks on dense networks. This surprising finding applied to both shallow and deep networks and it overturns the notion that the brain-like spectrum (corresponding to $α\sim 1$) always optimizes ANN performance and/or robustness. For convolutional networks, the best $α$ values depend on the task complexity and evaluation metric: lower $α$ values optimized validation accuracy and robustness to adversarial attack for networks performing a simple object recognition task (categorizing MNIST images of handwritten digits); for a more complex task (categorizing CIFAR-10 natural images), we found that lower $α$ values optimized validation accuracy whereas higher $α$ values optimized adversarial robustness. These results have two main implications. First, they cast doubt on the notion that brain-like spectral properties ($α\sim 1$) \emph{always} optimize ANN performance. Second, they demonstrate the potential for fine-tuned spectral regularizers to optimize a chosen design metric, i.e., accuracy and/or robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源