论文标题
关于ra产生的分数积分,在抛物面上转化
On Fractional Integrals Generated by Radon Transforms over Paraboloids
论文作者
论文摘要
我们应用了L. grafakos传达的E. Stein插值定理的傅立叶变换技术和修改版本,以获得ra径转换的尖锐$ l^p $ - $ l^q $估计值,以及更一般的卷积型分数积分,与核子上的核具有奇异的核心。
We apply the Fourier transform technique and a modified version of E. Stein's interpolation theorem communicated by L. Grafakos, to obtain sharp $L^p$-$L^q$ estimates for the Radon transform and more general convolution-type fractional integrals with the kernels having singularity on the paraboloids.