论文标题
单源随机砂流模型的渐近学
Asymptotics of the single-source stochastic sandpile model
论文作者
论文摘要
在单源沙皮模型中,在二维网格$ \ mathbb {z}^2 $上位于中央顶点的数字$ n $ chrains。我们研究了基于\ Mathbb {n} $的参数$ m \的随机沙珀模型的这种配置的稳定化。在此型号中,如果一个顶点至少有400万美元的沙子,它的顶部,向其四个邻居中的每个邻居中的每个邻居发送$ k $ ch $ chance ch $ k $,并根据一些随机分配$γ$带有support $ \ {1,\ cdots,m \} $。拨出台一下,每次都会绘制一个新的随机数$ k $,直到我们达到稳定的配置,在该配置中,所有顶点的谷物都低于$ 400万美元。该模型对Kim和Wang引入的模型是一个轻微的变体。 我们分析了上述为$ n $的稳定过程,趋向于无穷大(固定$ m $),对于各种概率分布$γ$。我们专注于系统的两个全局参数,称为半径和雪崩编号。半径数是从稳定期间发送谷物的原点的最大距离,而雪崩的数量是制作的拨号总数。我们的模拟表明,这两个数字都具有相当简单的渐近行为,因为$γ$,$ n $和$ m $的功能趋向于无穷大。在$γ$是参数$ p $的二项式分布的情况下,我们还提供了更详细的分析,尤其是当$ p $倾向于$ 1 $时。我们在该制度中以$ p \ sim 1/n $的规模展示了相位过渡。
In the single-source sandpile model, a number $N$ grains of sand are positioned at a central vertex on the 2-dimensional grid $\mathbb{Z}^2$. We study the stabilisation of this configuration for a stochastic sandpile model based on a parameter $M \in \mathbb{N}$. In this model, if a vertex has at least $4M$ grains of sand, it topples, sending $k$ grains of sand to each of its four neighbours, where $k$ is drawn according to some random distribution $γ$ with support $\{1,\cdots,M\}$. Topplings continue, a new random number $k$ being drawn each time, until we reach a stable configuration where all the vertices have less than $4M$ grains. This model is a slight variant on the one introduced by Kim and Wang. We analyse the stabilisation process described above as $N$ tends to infinity (for fixed $M$), for various probability distributions $γ$. We focus on two global parameters of the system, referred to as radius and avalanche numbers. The radius number is the greatest distance from the origin to which grains are sent during the stabilisation, while the avalanche number is the total number of topplings made. Our simulations suggest that both of these numbers have fairly simple asymptotic behaviours as functions of $γ$, $N$ and $M$ as $N$ tends to infinity. We also provide a more detailed analysis in the case where $γ$ is the binomial distribution with parameter $p$, in particular when $p$ tends to $1$. We exhibit a phase transition in that regime at the scale $p \sim 1/N$.