论文标题
使用广义parseval的身份和theta代数的有效多党协议
Efficient Multiparty Protocols Using Generalized Parseval's Identity and the Theta Algebra
论文作者
论文摘要
我们提出了一个能够在秘密共享值上公开添加和乘法的协议。为此,我们根据蒙版和FMPC(傅立叶多方计算)开发了一个协议。 FMPC是一种基于秘密共享的算术电路的新型多方计算方案,能够计算无通信的秘密的添加和乘法。我们通过引入适用于任意数量的输入的傅立叶级数的第一个概括和称为“ theta-algebra”的新代数来实现这项任务。 FMPC在用户希望通过将计算提交给一组节点的情况下计算某些秘密输入的功能的设置,而无需透露这些输入。 FMPC将大多数计算复杂性卸载给最终用户,并包括一个在线阶段,该阶段主要由每个节点组成,该节点在本地评估特定功能。 FMPC为一种新型的多方计算协议铺平了道路。可以计算秘密的添加和乘法,从电路夹和唐纳德·比弗(Donald Beaver)于1991年引入的传统代数逐渐消失。我们的协议能够计算添加和乘法,而没有通信,其简单性可提供效率和易于实施。
We propose a protocol able to show publicly addition and multiplication on secretly shared values. To this aim we developed a protocol based on the use of masks and on the FMPC (Fourier Multi-Party Computation). FMPC is a novel multiparty computation protocol of arithmetic circuits based on secret-sharing, capable to compute addition and multiplication of secrets with no communication. We achieve this task by introducing the first generalisation of Parseval's identity for Fourier series applicable to an arbitrary number of inputs and a new algebra referred to as the "Theta-algebra". FMPC operates in a setting where users wish to compute a function over some secret inputs by submitting the computation to a set of nodes, without revealing them those inputs. FMPC offloads most of the computational complexity to the end users, and includes an online phase that mainly consists of each node locally evaluating specific functions. FMPC paves the way for a new kind of multiparty computation protocols; making it possible to compute addition and multiplication of secrets stepping away from circuit garbling and the traditional algebra introduced by Donald Beaver in 1991. Our protocol is capable to compute addition and multiplication with no communication and its simplicity provides efficiency and ease of implementation.