论文标题

物理知识的深度学习方法,以减少胶体自组装的随机控制

A Physics-informed Deep Learning Approach for Minimum Effort Stochastic Control of Colloidal Self-Assembly

论文作者

Nodozi, Iman, O'Leary, Jared, Mesbah, Ali, Halder, Abhishek

论文摘要

我们提出了在概率密度函数(PDFS)的胶体自组装(即订单参数)的概率密度函数(PDF)中的有限摩尼斯随机最佳控制问题。控制目标是根据将状态PDF从规定的初始概率指标转向最小控制工作的规定终端概率指标的提出的。对于特异性,我们使用文献中的单变量随机状态模型。本文在本文中开发的分析和对控制合成的计算步骤均推广,用于在状态中通用非线性和对照模型中的非伴随的多元随机状态动力学。我们为相关的最佳控制问题得出了最佳条件。该推导产生一个由三个耦合部分微分方程的系统,以及在初始和终端时间的边界条件。最终的系统是所谓的Schrödinger桥问题的广义实例。然后,我们通过培训物理信息深度神经网络来确定最佳控制策略,其中“物理学”是最佳的派生条件。通过基准胶体自组装问题的数值模拟证明了所提出的解决方案的性能。

We propose formulating the finite-horizon stochastic optimal control problem for colloidal self-assembly in the space of probability density functions (PDFs) of the underlying state variables (namely, order parameters). The control objective is formulated in terms of steering the state PDFs from a prescribed initial probability measure towards a prescribed terminal probability measure with minimum control effort. For specificity, we use a univariate stochastic state model from the literature. Both the analysis and the computational steps for control synthesis as developed in this paper generalize for multivariate stochastic state dynamics given by generic nonlinear in state and non-affine in control models. We derive the conditions of optimality for the associated optimal control problem. This derivation yields a system of three coupled partial differential equations together with the boundary conditions at the initial and terminal times. The resulting system is a generalized instance of the so-called Schrödinger bridge problem. We then determine the optimal control policy by training a physics-informed deep neural network, where the "physics" are the derived conditions of optimality. The performance of the proposed solution is demonstrated via numerical simulations on a benchmark colloidal self-assembly problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源