论文标题
贾格勒的饰边
Juggler's friezes
论文作者
论文摘要
本说明将$ \ mathrm {sl}(k)$ - friezes列为数字配置,其中一个边界行被破烂的边缘取代(由杂耍函数描述)。我们在决定因素,线性复发和双重杂耍者的frize方面提供了这些杂耍者的饰边的几种等效定义/特征。我们概括了经典的结果,例如周期性,二元性和一部分格拉曼尼亚人的参数化。我们还提供了一种使用矩阵的扭曲来从某些$ k \ times n $矩阵中构建此类frizes的方法。
This note generalizes $\mathrm{SL}(k)$-friezes to configurations of numbers in which one of the boundary rows has been replaced by a ragged edge (described by a juggling function). We provide several equivalent definitions/characterizations of these juggler's friezes, in terms of determinants, linear recurrences, and a dual juggler's frieze. We generalize classic results, such as periodicity, duality, and a parametrization by part of a Grassmannian. We also provide a method of constructing such friezes from certain $k \times n$ matrices using the twist of a matrix.