论文标题
异步事件的时间上取样
Temporal Up-Sampling for Asynchronous Events
论文作者
论文摘要
活动相机是一种新型的生物启发的视觉传感器。当亮度变化超过预设阈值时,传感器会异步生成事件。有效事件的数量直接影响基于事件的任务的性能,例如重建,检测和识别。但是,当在低亮度或缓慢的场景中,事件通常稀疏且伴随着噪音,这对基于事件的任务构成了挑战。为了解决这些挑战,我们提出了一个事件的时间上取样算法,以产生更有效和可靠的事件。我们的算法的主要思想是在事件运动轨迹上生成上采样事件。首先,我们通过对比度最大化算法来估计事件运动轨迹,然后通过时间点过程对事件进行更采样。实验结果表明,上采样事件可以提供更有效的信息并改善下游任务的性能,例如提高重建图像的质量并提高对象检测的准确性。
The event camera is a novel bio-inspired vision sensor. When the brightness change exceeds the preset threshold, the sensor generates events asynchronously. The number of valid events directly affects the performance of event-based tasks, such as reconstruction, detection, and recognition. However, when in low-brightness or slow-moving scenes, events are often sparse and accompanied by noise, which poses challenges for event-based tasks. To solve these challenges, we propose an event temporal up-sampling algorithm1 to generate more effective and reliable events. The main idea of our algorithm is to generate up-sampling events on the event motion trajectory. First, we estimate the event motion trajectory by contrast maximization algorithm and then up-sampling the events by temporal point processes. Experimental results show that up-sampling events can provide more effective information and improve the performance of downstream tasks, such as improving the quality of reconstructed images and increasing the accuracy of object detection.