论文标题

两个匈牙利人的故事:tridiagonalize随机矩阵

A Tale of Two Hungarians: Tridiagonalizing Random Matrices

论文作者

Balasubramanian, Vijay, Magan, Javier M., Wu, Qingyue

论文摘要

匈牙利物理学家Eugene Wigner在物理学中引入了随机基质模型,以描述原子核的能谱。因此,随机矩阵理论(RMT)的主要目标是从给定分布中得出矩阵的特征值统计。 Wigner方法对热平衡中复杂的混乱系统的性质有了强有力的见解。另一位匈牙利人Cornelius Lanczos提出了一种将任何量子系统动力学降低到一维链的方法,通过将汉密尔顿的三对抗相对于给定的初始状态进行三维链。在最终的矩阵中,对角线和非对角线兰斯佐斯系数控制转变幅度在杰出状态的元素之间。我们通过得出将一般RMT或等效状态的潜在的分析公式与兰开斯系数及其相关性联系起来,将这两种方法连接到复杂系统的量子力学。特别是,我们得出了平均兰开斯系数和状态密度之间的积分关系,并且对于多项式电势,代数方程确定了电势的兰克佐斯系数。我们在热力学极限中获得了通用初始状态的这些结果。作为一种应用,我们计算了热场双状态的时间依赖性``扩展复杂性''以及高斯和非高斯rmts的光谱形式。

The Hungarian physicist Eugene Wigner introduced random matrix models in physics to describe the energy spectra of atomic nuclei. As such, the main goal of Random Matrix Theory (RMT) has been to derive the eigenvalue statistics of matrices drawn from a given distribution. The Wigner approach gives powerful insights into the properties of complex, chaotic systems in thermal equilibrium. Another Hungarian, Cornelius Lanczos, suggested a method of reducing the dynamics of any quantum system to a one-dimensional chain by tridiagonalizing the Hamiltonian relative to a given initial state. In the resulting matrix, the diagonal and off-diagonal Lanczos coefficients control transition amplitudes between elements of a distinguished basis of states. We connect these two approaches to the quantum mechanics of complex systems by deriving analytical formulae relating the potential defining a general RMT, or, equivalently, its density of states, to the Lanczos coefficients and their correlations. In particular, we derive an integral relation between the average Lanczos coefficients and the density of states, and, for polynomial potentials, algebraic equations that determine the Lanczos coefficients from the potential. We obtain these results for generic initial states in the thermodynamic limit. As an application, we compute the time-dependent ``spread complexity'' in Thermo-Field Double states and the spectral form factor for Gaussian and Non-Gaussian RMTs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源