论文标题

无限距离和分解

Infinite Distances and Factorization

论文作者

Stout, John

论文摘要

该信息度量标准提供了沿任何连续的物理理论系列的独特距离概念,将两种理论与众不同,它们越明显。因此,信息指标通常在量子关键点上是单数,这反映了与家庭中其他理论相比,它们在质量上不同的规模不变预测。但是,这种奇异性总是在有限的距离处。本文的目的是研究无限的距离度量奇点,并了解什么类型的物理产生它们。我们认为,信息度量中的无限距离限制对应于预期值分解的理论,并且单位性限制了度量的渐近形式,即具有通用对数奇异性,其系数仅取决于如何接近分解限制。我们在一组广泛的示例中说明了这种关系。此外,我们认为它为量子距离猜想所描述的模量空间的渐近区域中看似普遍的量子重力行为提供了一种特别简单的自下而上动机:重力普遍伴侣与压力能量能量,从而掩盖了分解限制。在许多例子中出现在这些范围内的光场的塔可以使重力脱离,并始终如一地进行分解。我们通过全息图更精确,并提出了一种始终如一地实现没有光场塔的无限距离限制的方法。

The information metric provides a unique notion of distance along any continuous family of physical theories, placing two theories further apart the more distinguishable they are. As such, the information metric is typically singular at quantum critical points, reflecting the fact they make qualitatively different scale-invariant predictions when compared to other theories in the family. However, such singularities are always at finite distance. The goal of this paper is to study infinite distance metric singularities and understand what type of physics generates them. We argue that infinite distance limits in the information metric correspond to theories in which expectation values factorize, and that unitarity restricts the asymptotic form of the metric to have a universal logarithmic singularity whose coefficient only depends on how the factorization limit is approached. We illustrate this relationship in a set of wide-ranging examples. Furthermore, we argue that it provides a particularly simple bottom-up motivation for the seemingly universal behavior of quantum gravity in asymptotic regions of moduli space described by the Swampland Distance Conjecture: gravity universally couples to stress-energy and thus abhors factorization limits. The towers of light fields that appear in these limits in so many examples serve to decouple gravity and consistently allow for factorization. We make this more precise via holography and suggest a way to consistently realize infinite distance limits without a tower of light fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源