论文标题

物质与高自旋(超级)领域之间的保形相互作用

Conformal interactions between matter and higher-spin (super)fields

论文作者

Kuzenko, Sergei M., Ponds, Michael, Raptakis, Emmanouil S. N.

论文摘要

在时空的维度中,相互作用的玻色符保形高旋转(CHS)理论也可以实现为诱导作用。此定义中的主要成分是模型$ \ MATHCAL {s} [φ,h] $描述复杂的标量字段$φ$耦合到无限的背景CHS Fields $ H $,带有$ \ MATHCAL {S} [φ,H] $具有非亚洲平民计符号。文献中给出的$ \ MATHCAL {S} [φ,H] $的扰动构建体的两个特征是:(i)背景时空是平坦的; (ii)共形不变性并不明显。在本文中,我们在四个维度上提供了此动作的新推导,以便(i)$ \ natercal {s} [φ,h] $在任意的保质式背景上定义; (ii)背景形式对称性明显实现。接下来,我们的结果将扩展到$ \ Mathcal {n} = 1 $ supersymmetric情况。具体来说,我们首次构建了一个模型$ \ MATHCAL {s} [φ,h] $,用于保形标量/手性倍数$φ$耦合到无限型背景高级型超级超级领域$ h $。我们的动作具有非亚伯仪对称性,自然而然地概括了共形半级超级单键多重的线性化量规变换。该模型的其他基本特征是:(i)$ \ MATHCAL {s} [φ,h] $是在任意的共形式超空间背景上定义的; (ii)背景$ \ MATHCAL {N} = 1 $ SUPERCONGORAL SYOMMETRY已显示。利用$ \ Mathcal {s} [φ,h] $,可以将相互作用的超构型高旋转理论定义为诱导的动作。

In even spacetime dimensions, the interacting bosonic conformal higher-spin (CHS) theory can be realised as an induced action. The main ingredient in this definition is the model $\mathcal{S}[φ,h]$ describing a complex scalar field $φ$ coupled to an infinite set of background CHS fields $h$, with $\mathcal{S}[φ,h]$ possessing a non-abelian gauge symmetry. Two characteristic features of the perturbative constructions of $\mathcal{S}[φ, h]$ given in the literature are: (i) the background spacetime is flat; and (ii) conformal invariance is not manifest. In the present paper we provide a new derivation of this action in four dimensions such that (i) $\mathcal{S}[φ, h]$ is defined on an arbitrary conformally-flat background; and (ii) the background conformal symmetry is manifestly realised. Next, our results are extended to the $\mathcal{N}=1$ supersymmetric case. Specifically, we construct, for the first time, a model $\mathcal{S}[Φ, H]$ for a conformal scalar/chiral multiplet $Φ$ coupled to an infinite set of background higher-spin superfields $H$. Our action possesses a non-abelian gauge symmetry which naturally generalises the linearised gauge transformations of conformal half-integer superspin multiplets. The other fundamental features of this model are: (i) $\mathcal{S}[Φ, H]$ is defined on an arbitrary conformally-flat superspace background; and (ii) the background $\mathcal{N}=1$ superconformal symmetry is manifest. Making use of $\mathcal{S}[Φ, H]$, an interacting superconformal higher-spin theory can be defined as an induced action.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源