论文标题
无定形硅中自扩散的原子机制
Atomic mechanisms of self-diffusion in amorphous silicon
论文作者
论文摘要
根据经典分子动力学模拟的无定形硅(A-SI)自扩散(SD)系数的最新计算[M. Posselt,H。Bracht和D.Radić,J。Appl。物理。 131,035102(2022)]对原子机制进行了详细研究。为此,采用了两种Stillinger-weber型电势,一个强烈高估了SD系数,而另一个导致值更接近实验数据。通过考虑原子的单个平方位移(或扩散长度),可以单独确定对总平方位移对总平方平方位移的扩散和振动贡献。结果表明,扩散部分与配位缺陷的浓度不直接相关。原子平方位移的时间依赖性分布表明,与晶体SI中的SD相比,在A-SI中不存在明确的元素扩散长度。对具有较大平方位移的原子的分析表明,A-SI中SD的机制的特征是键合复杂或邻居交换。这些是邻居和邻居置换的单向交换。交流或替换可能最多涉及三个邻居,并且可能发生在某些PS的相对较短的时间内。与包括更多邻居在内的过程相比,双向交换或单向交换或更换一个邻居原子发生的频率更高。两种原子间电位的结果比较表明,增加的三体参数只会减慢迁移的速度,但不会从根本上改变迁移机制。
Based on recent calculations of the self-diffusion (SD) coefficient in amorphous silicon (a-Si) by classical Molecular Dynamics simulation [M. Posselt, H. Bracht, and D. Radić, J. Appl. Phys. 131, 035102 (2022)] detailed investigations on atomic mechanisms are performed. For this purpose two Stillinger-Weber-type potentials are employed, one strongly overestimates the SD coefficient, while the other leads to values much closer to the experimental data. By taking into account the individual squared displacements (or diffusion lengths) of atoms the diffusional and vibrational contributions to the total mean squared displacement can be determined separately. It is shown that the diffusional part is not directly correlated with the concentration of coordination defects. The time-dependent distribution of squared displacements of atoms indicates that in a-Si a well-defined elemental diffusion length does not exist, in contrast to SD in the crystalline Si. The analysis of atoms with large squared displacements reveals that the mechanisms of SD in a-Si are characterized by complex rearrangements of bonds or exchange of neighbors. These are mono- and bi-directional exchanges of neighbors and neighbor replacements. Exchanges or replacements may concern up to three neighbors and may occur in relatively short periods of some ps. Bi- or mono-directional exchange or replacement of one neighbor atom happen more frequently than processes including more neighbors. A comparison of results for the two interatomic potentials shows that an increased three-body parameter only slows down the migration, but does not change the migration mechanisms fundamentally.