论文标题
任何强大的可控组系统或组移动或任何线性块代码都是同构的,这是生成器组的
Any strongly controllable group system or group shift or any linear block code is isomorphic to a generator group
论文作者
论文摘要
考虑任何有限组$ a^t $的序列,其中$ t $在整数索引集$ \ mathbf {z} $中取值。组系统$ a $是一组序列,其中$ a^t $中的组件在$ a^t $中构成了一个组的组,对于\ mathbf {z} $中的每个$ a^t $中的组。如前所述,任何可控制的完整组系统$ a $都可以分解为发电机。当组系统中的序列乘以时,我们研究发电机的排列。我们表明,任何强大的完整组系统$ a $都是生成器组$({\ Mathcal {u}},\ circ)$的同构。集合$ {\ Mathcal {u}} $是一组张量,是$ g_k^t $的双笛卡尔产品空间,带有$ k $,价格为$ 0 \ le k \ le \ el \ ell $,time $ t $,对于$ t \ in \ nathbf {z} $。 $ g_k^t $是$ a $ a $的一组唯一的发电机标签,用于时间间隔$ [t,t+k] $。我们显示,发电机组包含一个独特的基本系统,一个无限的基本组集合,每个$ k $和$ t $一个,在$ {\ mathcal {u}} $的小亚集中定义为三角形的形状,形成了一个像$ {\ mathcal {u}} $的瓷砖结构。从每个基本组到前者较小的瓷砖定义的任何基本组都有同态。组系统$ a $可以由发电机组或基本系统构建。这些结果应用于线性块代码,任何包含线性块代码,群体变化和谐波理论的代数系统以及系统理论,编码理论,控制理论以及工程中的相关领域。
Consider any sequence of finite groups $A^t$, where $t$ takes values in an integer index set $\mathbf{Z}$. A group system $A$ is a set of sequences with components in $A^t$ that forms a group under componentwise addition in $A^t$, for each $t\in\mathbf{Z}$. As shown previously, any strongly controllable complete group system $A$ can be decomposed into generators. We study permutations of the generators when sequences in the group system are multiplied. We show that any strongly controllable complete group system $A$ is isomorphic to a generator group $({\mathcal{U}},\circ)$. The set ${\mathcal{U}}$ is a set of tensors, a double Cartesian product space of sets $G_k^t$, with indices $k$, for $0\le k\le\ell$, and time $t$, for $t\in\mathbf{Z}$. $G_k^t$ is a set of unique generator labels for the generators in $A$ with nontrivial span for the time interval $[t,t+k]$. We show the generator group contains a unique elementary system, an infinite collection of elementary groups, one for each $k$ and $t$, defined on small subsets of ${\mathcal{U}}$, in the shape of triangles, which form a tile like structure over ${\mathcal{U}}$. There is a homomorphism from each elementary group to any elementary group defined on smaller tiles of the former group. The group system $A$ may be constructed from either the generator group or elementary system. These results have application to linear block codes, any algebraic system that contains a linear block code, group shifts, and harmonic theory in mathematics, and systems theory, coding theory, control theory, and related fields in engineering.