论文标题

使用物理性BOS估计超音速流中的密度,速度和压力场

Estimating density, velocity, and pressure fields in supersonic flow using physics-informed BOS

论文作者

Molnar, Joseph P., Venkatakrishnan, Lakshmi, Schmidt, Bryan E., Sipkens, Timothy A., Grauer, Samuel J.

论文摘要

我们报告了一种面向背景的Schlieren(BOS)的新工作流程,称为“物理知识的BOS”,以从一对参考和扭曲的图像中提取密度,速度和压力场。我们的方法使用物理知识的神经网络(PINN)产生同时满足测量数据和管理方程的流场。对于这项工作中感兴趣的高速流,我们根据Euler和无关方程式指定物理损失。 BOS是一种定量的流体可视化技术,用于表征高速流。使用计算机视觉和层析成像算法处理的背景模式的图像,位于目标流的后面,以确定密度场。至关重要的是,BOS具有一系列需要补充信息(即图像之外)以准确重建流量的不良反相问题。当前的BOS工作流程依靠图像的插值或罚款项来促进全球或分段平滑的解决方案。但是,这些算法与流体物理学总是不兼容的,导致密度场的错误。物理知识的BOS使用包括BOS测量模型和管理方程的PINN直接重建所有流场。此过程提高了密度估计的准确性,还产生了速度和压力数据,这是以前尚不可用的。我们通过重建与分析和数值幻像以及实验测量相对应的合成数据来证明我们的方法。我们的物理知识的重建比常规BOS估计值明显更准确。此外,据我们所知,这项工作代表了PINN首次使用从任何类型的实验数据中重建超音速流。

We report a new workflow for background-oriented schlieren (BOS), termed "physics-informed BOS," to extract density, velocity, and pressure fields from a pair of reference and distorted images. Our method uses a physics-informed neural network (PINN) to produce flow fields that simultaneously satisfy the measurement data and governing equations. For the high-speed flows of interest in this work, we specify a physics loss based on the Euler and irrotationality equations. BOS is a quantitative fluid visualization technique that is used to characterize high-speed flows. Images of a background pattern, positioned behind the target flow, are processed using computer vision and tomography algorithms to determine the density field. Crucially, BOS features a series of ill-posed inverse problems that require supplemental information (i.e., in addition to the images) to accurately reconstruct the flow. Current BOS workflows rely upon interpolation of the images or a penalty term to promote a globally- or piecewise-smooth solution. However, these algorithms are invariably incompatible with the flow physics, leading to errors in the density field. Physics-informed BOS directly reconstructs all the flow fields using a PINN that includes the BOS measurement model and governing equations. This procedure improves the accuracy of density estimates and also yields velocity and pressure data, which was not previously available. We demonstrate our approach by reconstructing synthetic data that corresponds to analytical and numerical phantoms as well as experimental measurements. Our physics-informed reconstructions are significantly more accurate than conventional BOS estimates. Further, to the best of our knowledge, this work represents the first use of a PINN to reconstruct a supersonic flow from experimental data of any kind.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源