论文标题

Anyons,Zitterbewegung和拓扑非平凡的系统中的动态相变

Anyons, Zitterbewegung and dynamical phase transitions in topologically nontrivial systems

论文作者

Lunić, Frane

论文摘要

物理系统中的非平凡拓扑是许多现象背后的驱动力。值得注意的是,物质阶段必须部分由其拓扑特性归类。具有拓扑顺序(TO)的阶段,例如分数量子霍尔效应(QHE),可以支持任何能在拓扑量子计算中使用潜在应用来遵守分数统计的激发。如果某些对称性施加,那么缺乏固有的状态仍然可以在拓扑阶段。这些受对称保护的阶段本身并不支持任何人,但是它们仍然可以具有其他有趣的特征,例如受保护的边界状态。在本文中,我们将研究介绍给几个非平凡系统。首先,我们介绍了倒置对称性蜂窝状晶格的山谷模式中光传播的结果。我们发现,由于山谷的非平凡拓扑结构,导致Zitterbewegung的旋转螺旋模式出现在梁的强度。接下来,我们介绍由光子介质的非线性驱动的动力拓扑相变的数值证明,该介质发生在孤子SSH晶格中。由于设置使Intracell和Intercell soliton耦合的值不断变化的设置,因此以拓扑边缘状态的外观出现标记的相变。最后,我们提出了一个方案,用于通过使用特殊量身定制的局部探针扰动非互动系统中的合成anyons。需要外部探针,因为非交互系统没有支持任何人所需的那种。我们从均匀磁场(整数QHE状态)中的2DEG开始,并引入带有分数磁通量的薄螺线管。我们发现合适的基态,并证明了电磁阀坐标中的分数编织统计。

Nontrivial topology in physical systems is the driving force behind many phenomena. Notably, phases of matter must be classified in part by their topological properties. Phases with topological order (TO), such as the fractional quantum Hall effect (QHE), can support anyonic excitations obeying fractional statistics with potential application in topological quantum computing. States lacking intrinsic TO can still be in topological phases provided certain symmetries are imposed. On their own, these symmetry-protected phases do not support anyons, but they can still have other interesting features, such as protected boundary states. In this thesis we present our research into several nontrivial systems. First, we present the results on light propagation in the valley modes of inversion-symmetry broken honeycomb lattices. We find that a rotating spiral pattern, leading to Zitterbewegung, arises in the intensity profile of the beam as a result of the nontrivial topology of the valleys. Next, we present the numerical demonstration of dynamical topological phase transitions driven by nonlinearity of the photonic medium, which occur in soliton SSH lattices. The phase transitions, marked by the appearance of topological edge states in the band gap, occur due to the setup which enables continually changing values of the intracell and intercell soliton couplings. Finally, we propose a scheme for creating and manipulating synthetic anyons in a noninteracting system by perturbing it with specially tailored localized probes. The external probes are needed because noninteracting systems do not possess the kind of TO required to support anyons. We start from a 2DEG in a uniform magnetic field (in an integer QHE state) and introduce thin solenoids carrying a fractional magnetic flux. We find a suitable ground state and demonstrate the fractional braiding statistics in the coordinates of the solenoids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源