论文标题

在成核和生长过程中的动态缩放和随机分形

Dynamic scaling and stochastic fractal in nucleation and growth processes

论文作者

Lahiri, Amit, Hassan, Md. Kamrul, Blasius, Bernd, Kurths, Jürgen

论文摘要

研究了各种不同生长速度的稳定相(S期)的一类成核和生长模型。结果表明,对于增长速度,$ v \ sim s(t)/t $和$ v \ sim x/τ(x)$,其中$ s(t)$和$τ$是亚稳态相(M相)和平均成核时间的平均域大小和平均成核时间的平均域大小,遵循功率法之后的m频率衰变。此外,在不同时间的快照$ t $用于收集域尺寸$ x $ m期$ x $的分布功能的数据,以遵守动态缩放。使用数据崩溃的想法,我们表明每个快照都是一个自相似的分形。但是,对于$ v = {\ rm const。} $,例如在经典的kolmogorov-johnson-mehl-avrami(kJMA)模型中,对于$ v \ sim 1/t $,m频率的衰减是指数的,并且它们不伴随动态量表。我们发现数值模拟和分析结果之间的完美一致性。

A class of nucleation and growth models of a stable phase (S-phase) is investigated for various different growth velocities. It is shown that for growth velocities $v\sim s(t)/t$ and $v\sim x/τ(x)$, where $s(t)$ and $τ$ are the mean domain size of the metastable phase (M-phase) and the mean nucleation time respectively, the M-phase decays following a power law. Furthermore, snapshots at different time $t$ are taken to collect data for the distribution function $c(x,t)$ of the domain size $x$ of M-phase are found to obey dynamic scaling. Using the idea of data-collapse we show that each snapshot is a self-similar fractal. However, for $v={\rm const.}$ like in the classical Kolmogorov-Johnson-Mehl-Avrami (KJMA) model and for $v\sim 1/t$ the decay of the M-phase are exponential and they are not accompanied by dynamic scaling. We find a perfect agreement between numerical simulation and analytical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源