论文标题

正常交叉表面,下降和镜子对称性的奇异性类别

Singularity categories of normal crossings surfaces, descent, and mirror symmetry

论文作者

Pascaleff, James, Sibilla, Nicolò

论文摘要

给定一个平稳的3倍$ y $,一个线条捆绑$ l \ to y $,以及$ l $的$ s $ s $ $ s $ l $,使得$ s $的消失基因座是一个普通的杂交表面$ x $,带有类似图形的奇异基因座,我们提出了一种重建$ x $的$ x $类别的$ x $类别的$ x $ $ x $ $ x $ $ xyzizz fixrix factorizizz fix.xyz faceizizz fix.xyz的方法: \ mathbb {a}^{3} \ to \ mathbb {a}^{1} $(镜像到这双裤子的福卡亚类别)。这扩展了我们先前的结果,即$ L $被琐碎的情况。关键技术是矩阵因数化类别的非两性周期自动等同的分类。我们还根据拉比诺维茨(Rabinowitz)包裹了fukaya fukaya类别的ganatra-gao-venkatesh,为某些符合性的四个manifolds展示了这些奇异性类别的猜想镜,并将这种构造与lekili-ueda和jeffs的工作联系起来。

Given a smooth 3-fold $Y$, a line bundle $L \to Y$, and a section $s$ of $L$ such that the vanishing locus of $s$ is a normal crossings surface $X$ with graph-like singular locus, we present a way to reconstruct the singularity category of $X$ as a homotopy limit of several copies of the category of matrix factorizations of $xyz : \mathbb{A}^{3} \to \mathbb{A}^{1}$ (the mirror to the Fukaya category of the pair of pants). This extends our previous result for the case where $L$ is trivialized. The key technique is the classification of non-two-periodic autoequivalences of the category of matrix factorizations. We also present a conjectural mirror for these singularity categories in terms of the Rabinowitz wrapped Fukaya categories of Ganatra-Gao-Venkatesh for certain symplectic four-manifolds, and relate this construction to work of Lekili-Ueda and Jeffs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源