论文标题
非分离非典型的哈密顿系统的显式K-链链曲
Explicit K-symplectic methods for nonseparable non-canonical Hamiltonian systems
论文作者
论文摘要
我们提出了有效的数值方法,用于在具有长时间能量守恒性能的扩展相空间中显式,k-symplectic的非分离非统治的哈密顿系统。它们基于将原始相空间扩展到相位空间的几个副本,并对相空间的副本施加机械约束。明确的K-核方法是针对三种非典型的哈密顿系统构建的。数值结果表明,在长期保留系统轨道和能量方面,它们的表现优于高阶runge-kutta方法。
We propose efficient numerical methods for nonseparable non-canonical Hamiltonian systems which are explicit, K-symplectic in the extended phase space with long time energy conservation properties. They are based on extending the original phase space to several copies of the phase space and imposing a mechanical restraint on the copies of the phase space. Explicit K-symplectic methods are constructed for three non-canonical Hamiltonian systems. Numerical results show that they outperform the higher order Runge-Kutta methods in preserving the phase orbit and the energy of the system over long time.