论文标题
最小和非最小$ \ Mathcal {z} _2 \ times \ Mathcal {z} _n $ Symemertry的味道上的风味界限
Flavour bounds on the flavon of a minimal and a non-minimal $\mathcal{Z}_2 \times \mathcal{Z}_N$ symmetry
论文作者
论文摘要
我们研究了$ \ Mathcal {z} _2 \ times \ Mathcal {z} _5 $和$ \ Mathcal {z} _2 \ times \ times \ Mathcal {z} _9 $ smotymetries。这些风味对称性是$ \ Mathcal {z} _2 \ times \ Mathcal {z} _n $风味对称性的最小和非最低形式,可以为Froggatt-Nielsen机制提供简单的设置。 $ \ MATHCAL {Z} _2 \ TIME \ MATHCAL {Z} _5 $和$ \ MATHCAL {Z} _2 \ TIMES \ TIMES \ MATHCAL {Z} _9 $ FLAIMING SYMEMETIRE能够解释包括中性元素在内的标准模型的Fermionic质量和混合模式。 $ \ MATHCAL {Z} _2 \ TIME \ MATHCAL {Z} _5 $和$ \ MATHCAL {Z} _2 \ TIMES \ TIMES \ MATHCAL {Z} _9 $ symmeties使用当前的风味和Lepton Profestion fortective fortive fortive fortive fortive fortive fortive fortive和未来, $ \ Mathcal {z} _2 \ times \ Mathcal {z} _5 $ symmetry的flavon上最强的界限来自$ d^0- \ bar d^0 $ mixing。 $ \ Mathcal {z} _2 \ times \ Mathcal {z} _9 $风味对称性的界限要比最小$ \ Mathcal {z} _2 \ times \ times \ Mathcal \ Mathcal {Z} _5 _5 $ Symmetry更强。比率$ r_ {μμμ} $在未来的apeas-\ rom {1}和LHCB的apep- rom {2}中提供了相当强大的界限,通过在模型允许的参数空间中仅留下一个很小的区域。
We investigate flavour bounds on the $\mathcal{Z}_2 \times \mathcal{Z}_5$ and $\mathcal{Z}_2 \times \mathcal{Z}_9$ flavour symmetries. These flavour symmetries are a minimal and a non-minimal forms of the $\mathcal{Z}_2 \times \mathcal{Z}_N$ flavour symmetry, that can provide a simple set-up for the Froggatt-Nielsen mechanism. The $\mathcal{Z}_2 \times \mathcal{Z}_5$ and $\mathcal{Z}_2 \times \mathcal{Z}_9$ flavour symmetries are capable of explaining the fermionic masses and mixing pattern of the standard model including that of the neutrinos. The bounds on the parameter space of the flavon field of the $\mathcal{Z}_2 \times \mathcal{Z}_5$ and $\mathcal{Z}_2 \times \mathcal{Z}_9$ flavour symmetries are derived using the current quark and lepton flavour physics data and future projected sensitivities of quark and lepton flavour effects. The strongest bounds on the flavon of the $\mathcal{Z}_2 \times \mathcal{Z}_5$ symmetry come from the $D^0 - \bar D^0$ mixing. The bounds on the $\mathcal{Z}_2 \times \mathcal{Z}_9$ flavour symmetry are stronger than that of the minimal $\mathcal{Z}_2 \times \mathcal{Z}_5$ symmetry. The ratio $R_{μμ}$ provides rather robust bounds on the flavon parameters in the future phase-\rom{1} and phase-\rom{2} of the LHCb by leaving only a very small region in the allowed parameter space of the models.