论文标题
了解CSV中的阻力振荡$ _3 $ SB $ _5 $超导体
Understanding resistance oscillation in CsV$_3$Sb$_5$ superconductor
论文作者
论文摘要
最近在胶片中带有一个孔的CSV $ _3 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ _5 $ sb $ _5 $ sb $ sb $ sb $ _5 $的电阻振荡的最新证明表明,收费-4e $ and Charge-$ 6e $ cooper Pairs可能在这种化合物中凝结了。尽管令人兴奋,但这种解释要求精确确定库珀对从铅的一端传递到另一端的有效领域。与传统的小公园效果不同,孔周围的边缘很薄,有效孔区域并未明显定义为[Arxiv:2201.10352]中采用的“厚边缘几何”。在这里,我们注意到该实验是在超倾斜性强烈波动的制度中进行的,这激发了基于时间依赖性的金茨堡 - 兰道理论的时空公式的分析。我们认为,在适当的条件下,最佳的半古典路径不是几何路径,而是沿孔边缘移动并利用孔边界处的减少波动的一条几何路径。从几何最短路径到粘在墙上的路径的交叉状况被阐明。在这种情况下,孔的几何区域确实是通量的有效区域,为[Arxiv:2201.10352]中给出的解释提供了理论上的理由。我们的分析的结论可能对其他超导体中的类似实验有影响,因为该设备的几何形状显然不是使用薄壁的小公园实验,而是[arxiv:2201.10352]中使用的厚riM类型的实验。
A recent demonstration of the periodic oscillation of resistance in the thin film of CsV$_3$Sb$_5$ superconductor with a hole in the film suggests that charge-$4e$ and charge-$6e$ Cooper pairs may have condensed in this compound. While exciting, such interpretation calls for a precise determination of the effective area for the passage of Cooper pairs from one end of the lead to the other. Unlike the traditional Little-Parks effect where the rim around the hole is thin, the effective hole area is not obviously defined for the "thick-rim geometry" adopted in [arxiv:2201.10352]. Here, we note that the experiment was conducted in a regime where the superconctivity is strongly fluctuating, which motivates an analysis based on the spacetime formulation of the time-dependent Ginzburg-Landau theory. We argue that under appropriate conditions, the optimal semi-classical path is not the geometrically shortest one, but the one that moves along the edge of the hole and takes advantage of the reduced fluctuations at the boundary of the hole. The condition for the cross-over from the geometrically shortest path to the path that sticks to the wall is clarified. In such a scenario, the geometric area of the hole indeed emerges as the effective area for the flux, providing a theoretical justification to the interpretation given in [arxiv:2201.10352]. The conclusion of our analysis may have implication for similar experiments in other superconductors where the geometry of the device is not obviously that of the Little-Parks experiment employing the thin wall, but of the thick-rim type such as used in [arxiv:2201.10352].