论文标题

在Pólya的猜想上,圆形部门和球

On the Pólya conjecture for circular sectors and for balls

论文作者

Filonov, N.

论文摘要

1954年,G。Polya猜想,在有限的$ω\ subset r^d $中,计数功能$ n(ω,λ)$ $ n(ω,λ)$ n dirichlet(neumann)的dirichlet(neumann)边界价值问题问题的特征值$ω\ subset r^d $比$(resp。 λ^{d/2} $。这里$λ$是光谱参数,$ω_d$是单位球的体积。我们证明了对任何圆形部门的Dirichlet和Neumann边界问题的猜想,以及用于任意维度的Dirichlet问题。我们大量使用\ cite {lps}的想法。

In 1954, G. Polya conjectured that the counting function $N(Ω,Λ)$ of the eigenvalues of the Laplace operator of the Dirichlet (resp. Neumann) boundary value problem in a bounded set $Ω\subset R^d$ is lesser (resp. greater) than $(2π)^{-d} ω_d |Ω| Λ^{d/2}$. Here $Λ$ is the spectral parameter, and $ω_d$ is the volume of the unit ball. We prove this conjecture for both Dirichlet and Neumann boundary problems for any circular sector, and for the Dirichlet problem for a ball of arbitrary dimension. We heavily use the ideas from \cite{LPS}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源