论文标题

Dynkin箭过的总稳定性和Auslander-Reiten理论

Total stability and Auslander-Reiten theory for Dynkin quivers

论文作者

Diaz, Yariana, Gilbert, Cody, Kinser, Ryan

论文摘要

本文涉及鲁达科夫(Rudakov)引入的一般性中的dynkin Quivers的稳定性功能。我们表明,要完全稳定,需要满足相对较少的不平等现象(即使每个不可分解的稳定)。 Namely, a stability function $μ$ is totally stable if and only if $μ(τV) < μ(V)$ for every almost split sequence $0 \to τV \to E \to V \to 0$ where $E$ is indecomposable.这些可以可视化为奥斯兰德 - 雷氏箭袋“边界”周围的那些序列。

This paper concerns stability functions for Dynkin quivers, in the generality introduced by Rudakov. We show that relatively few inequalities need to be satisfied for a stability function to be totally stable (i.e. to make every indecomposable stable). Namely, a stability function $μ$ is totally stable if and only if $μ(τV) < μ(V)$ for every almost split sequence $0 \to τV \to E \to V \to 0$ where $E$ is indecomposable. These can be visualized as those sequences around the "border" of the Auslander-Reiten quiver.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源