论文标题

外部独立$ 2 $ rainbow主导函数的进一步结果

Further results on outer independent $2$-rainbow dominating functions of graphs

论文作者

Samadi, Babak, Soltankhah, Nasrin

论文摘要

令$ g =(v(g),e(g))$为图。 a函数$ f:v(g)\ rightarrow \ mathbb {p}(\ {1,2 \})$是$ 2 $ -RAINBOW主导函数,如果对于每个顶点$ v $ at $ f(v)= \ emberySet $,v $ v $ v $ $ g $的外部独立$ 2 $ -RAINBOW主导功能(OI $ 2 $ RD功能)是$ 2 $ - rainbow统治函数$ f $,其中所有$ v \ in v(g)$ in $ f(v)= \ emptySet $的集合是独立的。外部独立$ 2 $ -RAINBOW统治号码(oi $ 2 $ rd号)$γ_{oir2}(g)$是$ g $的oi $ 2 $ rd函数的最小重量。 在本文中,我们首先证明$ n/2 $是OI $ 2 $ rd的下限,订单$ n $的无连接爪图的数量,并表征了平等所持的所有此类图,解决了早期论文中给出的空旷问题。此外,还对某些图产品进行了此参数的研究。特别是,我们给出了一个封闭的(分别是)oi $ 2 $ rd的植根(分子电晕)产品图的封闭公式,并在此参数上证明了笛卡尔产品的上限和两个图的直接乘积。

Let $G=(V(G),E(G))$ be a graph. A function $f:V(G)\rightarrow \mathbb{P}(\{1,2\})$ is a $2$-rainbow dominating function if for every vertex $v$ with $f(v)=\emptyset$, $f\big{(}N(v)\big{)}=\{1,2\}$. An outer-independent $2$-rainbow dominating function (OI$2$RD function) of $G$ is a $2$-rainbow dominating function $f$ for which the set of all $v\in V(G)$ with $f(v)=\emptyset$ is independent. The outer independent $2$-rainbow domination number (OI$2$RD number) $γ_{oir2}(G)$ is the minimum weight of an OI$2$RD function of $G$. In this paper, we first prove that $n/2$ is a lower bound on the OI$2$RD number of a connected claw-free graph of order $n$ and characterize all such graphs for which the equality holds, solving an open problem given in an earlier paper. In addition, a study of this parameter for some graph products is carried out. In particular, we give a closed (resp. an exact) formula for the OI$2$RD number of rooted (resp. corona) product graphs and prove upper bounds on this parameter for the Cartesian product and direct product of two graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源