论文标题

使用无网蒙特卡罗估计器解决逆PDE问题

Solving Inverse PDE Problems using Grid-Free Monte Carlo Estimators

论文作者

Yılmazer, Ekrem Fatih, Vicini, Delio, Jakob, Wenzel

论文摘要

建模物理现象(如热传输和扩散)至关重要地取决于部分微分方程(PDE)的数值解。 PDE求解器找到了给定系数和边界条件的解决方案,而逆PDE求解器的方式相反,并从现有解决方案中重建了这些输入。在本文中,我们研究了使用基于梯度的方法来解决逆PDE问题的技术。基于有限元方法的常规PDE求解器需要一个域网格步骤,这可能是脆弱且昂贵的。无网蒙特卡洛方法相反,使用球形算法的步行变化来随机采样路径,以构建溶液的无偏估计量。最近的几项工作已经观察到了这些方法与基于物理的渲染算法的不可思议的相似性。在渲染领域,最近的进步导致了有效的无偏导数估计量的发展。他们解决了问题的伴随形式,并利用恒定数量的内存和线性时间复杂性来利用算术可逆性来计算梯度。是否可以将这两条工作组合在一起以计算无网格PDE求解器的廉价参数衍生物?我们研究了这个问题,并提出了初步结果。

Modeling physical phenomena like heat transport and diffusion is crucially dependent on the numerical solution of partial differential equations (PDEs). A PDE solver finds the solution given coefficients and a boundary condition, whereas an inverse PDE solver goes the opposite way and reconstructs these inputs from an existing solution. In this article, we investigate techniques for solving inverse PDE problems using a gradient-based methodology. Conventional PDE solvers based on the finite element method require a domain meshing step that can be fragile and costly. Grid-free Monte Carlo methods instead stochastically sample paths using variations of the walk on spheres algorithm to construct an unbiased estimator of the solution. The uncanny similarity of these methods to physically-based rendering algorithms has been observed by several recent works. In the area of rendering, recent progress has led to the development of efficient unbiased derivative estimators. They solve an adjoint form of the problem and exploit arithmetic invertibility to compute gradients using a constant amount of memory and linear time complexity. Could these two lines of work be combined to compute cheap parametric derivatives of a grid-free PDE solver? We investigate this question and present preliminary results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源