论文标题
S-lime:在线性解释中核对当地和忠诚
s-LIME: Reconciling Locality and Fidelity in Linear Explanations
论文作者
论文摘要
局部性的好处是石灰的主要前提之一,这是解释黑盒机器学习模型的最突出方法之一。这种强调依赖于假设,即我们在本地观察一个实例的附近,黑框模型变得越简单,并且我们可以用线性替代物模拟它越准确。尽管如此,我们的发现似乎是合乎逻辑的,这表明,借助石灰的当前设计,当解释过于本地时,即当带宽参数$σ$趋于零时,替代模型可能会退化。基于此观察,本文的贡献是双重的。首先,我们研究带宽和培训附近对石灰解释的忠诚度和语义的影响。其次,根据我们的发现,我们提出了\ slime,这是一定依靠忠诚和地方的石灰的扩展。
The benefit of locality is one of the major premises of LIME, one of the most prominent methods to explain black-box machine learning models. This emphasis relies on the postulate that the more locally we look at the vicinity of an instance, the simpler the black-box model becomes, and the more accurately we can mimic it with a linear surrogate. As logical as this seems, our findings suggest that, with the current design of LIME, the surrogate model may degenerate when the explanation is too local, namely, when the bandwidth parameter $σ$ tends to zero. Based on this observation, the contribution of this paper is twofold. Firstly, we study the impact of both the bandwidth and the training vicinity on the fidelity and semantics of LIME explanations. Secondly, and based on our findings, we propose \slime, an extension of LIME that reconciles fidelity and locality.