论文标题

通过图感染的主要特征值 - 元素对向量对估计

Dominant Eigenvalue-Eigenvector Pair Estimation via Graph Infection

论文作者

Yang, Kaiyuan, Xia, Li, Tay, Y. C.

论文摘要

我们提出了一种新的方法,可以通过图感染来估计任何非负实际基质的主要特征值和特征向量对。我们技术中的关键思想在于使用Euler方法近似于一阶矩阵普通微分方程(ODE)的解决方案。可以将可以加权,定向和循环加权的图首先转换为其邻接矩阵A。然后,通过图形的天真感染模型,我们建立了相应的一阶矩阵ode,通过该模型,A的主要特征值通过该模型,由该图由最快的增长项所揭示。当有相同幅度的多个主要特征值时,经典的功率迭代方法可能会失败。相比之下,即使存在相同的磁性对应物,我们的方法也可以收敛到主要的特征值,无论是复杂还是相反。我们进行了几个实验,以比较我们的方法和功率迭代之间的收敛性。我们的结果表明,对于树图,两部分图,带有周期的有向图以及带有蜘蛛陷阱的马尔可夫链的明显优势。据我们所知,这是从动力学系统和矩阵ode的角度估算主要特征值和特征向量对的第一项工作。我们认为我们的方法可以用作电力迭代的替代方法,尤其是对于图形。

We present a novel method to estimate the dominant eigenvalue and eigenvector pair of any non-negative real matrix via graph infection. The key idea in our technique lies in approximating the solution to the first-order matrix ordinary differential equation (ODE) with the Euler method. Graphs, which can be weighted, directed, and with loops, are first converted to its adjacency matrix A. Then by a naive infection model for graphs, we establish the corresponding first-order matrix ODE, through which A's dominant eigenvalue is revealed by the fastest growing term. When there are multiple dominant eigenvalues of the same magnitude, the classical power iteration method can fail. In contrast, our method can converge to the dominant eigenvalue even when same-magnitude counterparts exist, be it complex or opposite in sign. We conduct several experiments comparing the convergence between our method and power iteration. Our results show clear advantages over power iteration for tree graphs, bipartite graphs, directed graphs with periods, and Markov chains with spider-traps. To our knowledge, this is the first work that estimates dominant eigenvalue and eigenvector pair from the perspective of a dynamical system and matrix ODE. We believe our method can be adopted as an alternative to power iteration, especially for graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源