论文标题
关于卡拉比的数值尺寸 - YAU品种
On numerical dimensions of Calabi--Yau varieties
论文作者
论文摘要
令$ x $为calabi-yau种类繁多的PICARD第二,有无限的男子式汽车组。我们表明,$ x $的封闭移动锥的极端射线的数值尺寸$κ^{\ mathbb {r}}_σ$ IS $ \ dim x/2 $。更笼统地,我们研究了两个数值维度之间的关系$κ^{\ Mathbb {r}}_σ$和$κ^{\ Mathbb {r}} _ {\ Mathrm {vol}} $ for Calabi-yau-yau varieties。我们还计算$κ^{\ mathbb {r}}_σ$,用于在投射Hyperkähler歧管的封闭可移动锥中的非远距离除差。
Let $X$ be a Calabi--Yau variety of Picard number two with infinite birational automorphism group. We show that the numerical dimension $κ^{\mathbb{R}}_σ$ of the extremal rays of the closed movable cone of $X$ is $\dim X/2$. More generally, we investigate the relation between the two numerical dimensions $κ^{\mathbb{R}}_σ$ and $κ^{\mathbb{R}}_{\mathrm{vol}}$ for Calabi--Yau varieties. We also compute $κ^{\mathbb{R}}_σ$ for non-big divisors in the closed movable cone of a projective hyperkähler manifold.