论文标题
倒数$μ$ -CALCULUS
Countdown $μ$-calculus
论文作者
论文摘要
我们介绍了倒计时$μ$ -CALCULUS,这是模态$μ$ -CALCULUS的扩展,并具有FixPoint Operator的序数。除了经典的微积分中可定义的属性外,它还可以表达(UN)有界性属性,例如特定动作的任意长序列的存在。带有平等游戏和自动机的标准通信扩展到适当定义的倒计时游戏和自动机。但是,与经典环境不同,标量片段比完整的矢量积极弱弱,并且对应于满足简单句法条件的自动机。我们建立了一些事实,特别是模型检查问题的可确定性和由最大允许的新运营商嵌套引起的层次结构的严格性。
We introduce the countdown $μ$-calculus, an extension of the modal $μ$-calculus with ordinal approximations of fixpoint operators. In addition to properties definable in the classical calculus, it can express (un)boundedness properties such as the existence of arbitrarily long sequences of specific actions. The standard correspondence with parity games and automata extends to suitably defined countdown games and automata. However, unlike in the classical setting, the scalar fragment is provably weaker than the full vectorial calculus and corresponds to automata satisfying a simple syntactic condition. We establish some facts, in particular decidability of the model checking problem and strictness of the hierarchy induced by the maximal allowed nesting of our new operators.