论文标题

部分可观测时空混沌系统的无模型预测

H2S and SO2 detectability in Hot Jupiters: Sulfur species as indicator of metallicity and C/O ratio

论文作者

Polman, J., Waters, L. B. F. M., Min, M., Miguel, Y., Khorshid, N.

论文摘要

硫磺的高宇宙丰度以及中间的波动性和化学性质允许将含硫的物种用作热木星外系列大气中化学过程的示踪剂。然而,尽管它具有巨大行星形成历史的示踪剂的特性和相关性,但在热木星气氛的背景下,对该物种的关注很少。在这里,我们概述了在不同条件下热木星气氛中含硫的物种的丰富性,并探索它们的可观察性。我们使用光化学动力学代码硫甘发来模型热木星大气不平衡化学。这些气氛的传输光谱是使用建模框架ARCI创建的。我们改变了模型参数,例如扩散系数,我们研究了光化学对所得混合比的重要性。此外,我们通过增加太阳能的金属性到太阳能的10倍来改变大气的化学成分。我们还探索不同的C/O比。我们发现,使用代表JWST上仪器的光谱分辨率,H2S和SO2是1至10微米之间检测的最佳候选者。 H2S在〜1500 K和C/O比率的平衡温度在0.7至0.9之间最容易检测,理想值略有增加,以增加金属性。 SO2最有可能在低C/O比和高金属度的平衡温度下检测到。然而,在这两个分子中,我们预计SO2检测会更普遍,因为在形成模型更受青睐的情况下可以检测到。我们得出的结论是,H2S和SO2很可能会在未来几年与JWST一起检测,并且对这些物种的检测将提供有关大气过程和行星形成场景的信息。

The high cosmic abundance and the intermediate volatility and chemical properties of sulfur allow the use of sulfur-bearing species as a tracer of the chemical processes in the atmospheres of hot Jupiter exoplanets. Nevertheless, despite its properties and relevance as a tracer of the giant planets' formation history, little attention has been paid to this species in the context of hot Jupiter atmospheres. Here we provide an overview of the abundances of sulfur-bearing species in hot Jupiter atmospheres under different conditions and explore their observability. We use the photochemical kinetics code VULCAN to model hot Jupiter atmospheric disequilibrium chemistry. Transmission spectra for these atmospheres are created using the modelling framework ARCiS. We vary model parameters such as the diffusion coefficient, and we study the importance of photochemistry on the resulting mixing ratios. Furthermore, we vary the chemical composition of the atmosphere by increasing the metallicity from solar to ~10 times solar. We also explore different C/O ratios. We find that H2S and SO2 are the best candidates for detection between 1 and 10 micron, using a spectral resolution that is representative of the instruments on board the JWST. H2S is easiest to detect at an equilibrium temperature of ~1500 K and C/O ratios between 0.7 and 0.9, with the ideal value increasing slightly for increasing metallicity. SO2 is most likely to be detected at an equilibrium temperature of ~1000 K at low C/O ratios and high metallicities. Nevertheless, among these two molecules, we expect SO2 detection to be more common, as it is detectable in scenarios more favoured by formation models. We conclude that H2S and SO2 will most likely be detected in the coming years with the JWST and that the detection of these species will provide information on atmospheric processes and planet formation scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源