论文标题

根据Teichmüller距离从其DN-MAP确定Riemann表面的稳定性

Stability of determination of Riemann surface from its DN-map in terms of Teichmüller distance

论文作者

Belishev, M. I., Korikov, D. V.

论文摘要

众所周知,Riemannian Surface $(m,g)$的Dirichlet到Neumann运算符$λ$确定表面的结构等效类别$ [(M,G)] $。此类类构成Teichmüller空间,距离$ {\ rm d} _t $。我们表明确定是连续的:$ \ |λ-λ'\ | _ {h^1(\ partial m)\ to l_2(\ partial m)} \ 0 $ to to to 0 $ insuie $ {\ rm d} _t _t _t([(m,g)],[(m',g',g',g''))

As is known, the Dirichlet-to-Neumann operator $Λ$ of a Riemannian surface $(M,g)$ determines the surface up to conformal equivalence class $[(M,g)]$. Such classes constitute the Teichmüller space with the distance ${\rm d}_T$. We show that the determination is continuous: $\|Λ-Λ'\|_{H^1(\partial M)\to L_2(\partial M)}\to 0$ implies ${\rm d}_T([(M,g)],[(M',g')])\to 0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源