论文标题

集合预测在繁殖内核希尔伯特太空家庭

Ensemble forecasts in reproducing kernel Hilbert space family

论文作者

Dufée, Benjamin, Hug, Bérenger, Mémin, Etienne, Tissot, Gilles

论文摘要

提出了基于集合的估计和模拟高维动力系统(例如海洋或大气流)的方法学框架。为此,动态系统嵌入了一个由动力学驱动的内核功能的繁殖核Hilbert Spaces(RKHS)的家族中。在RKHS家族中,Koopman和Perron-Frobenius操作员是统一且均匀的。该属性保证它们可以在一系列由无限发电机定义的可对角度界进化算子的指数系列中表达出来。也可以直接获得对lyapunov指数的访问和切线线性动力学的确切集成表达式。 RKHS家族使我们能够根据轨迹样本的恒定时间线性组合来设计出惊人的简单集合数据同化方法。通过几个基本定理的完全合理的叠加原则,使这种令人尴尬的简单策略成为可能。

A methodological framework for ensemble-based estimation and simulation of high dimensional dynamical systems such as the oceanic or atmospheric flows is proposed. To that end, the dynamical system is embedded in a family of reproducing kernel Hilbert spaces (RKHS) with kernel functions driven by the dynamics. In the RKHS family, the Koopman and Perron-Frobenius operators are unitary and uniformly continuous. This property warrants they can be expressed in exponential series of diagonalizable bounded evolution operators defined from their infinitesimal generators. Access to Lyapunov exponents and to exact ensemble based expressions of the tangent linear dynamics are directly available as well. The RKHS family enables us the devise of strikingly simple ensemble data assimilation methods for trajectory reconstructions in terms of constant-in-time linear combinations of trajectory samples. Such an embarrassingly simple strategy is made possible through a fully justified superposition principle ensuing from several fundamental theorems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源