论文标题
自适应随机图过程中的尖锐阈值
Sharp Thresholds in Adaptive Random Graph Processes
论文作者
论文摘要
$ \ Mathcal {d} $ - Process是一个单人游戏,最初在$ n $ Vertices上显示了播放器的空图。在每个步骤中,一个边缘$ x $的子集根据分配$ \ mathcal {d} $独立采样。然后,播放器从$ x $中选择一个边缘$ e $,然后在当前图中添加$ e $。对于固定的单调增加图形属性$ \ MATHCAL {p} $,播放器的目的是强迫图形满足$ \ Mathcal {p} $,以尽可能几下的步骤。通过$ \ Mathcal {d} $的适当选择,$ \ Mathcal {d} $ - 流程概括了良好的自适应随机图过程,例如ACHLIOPTAS过程和半随机图 我们证明,在$ \ Mathcal {d} $ - process中存在$ \ mathcal {p} $的尖锐阈值的足够条件。对于半随机过程,当$ \ Mathcal {P} $对应于Hamiltonian或包含完美匹配时,我们使用此条件来证明存在急剧阈值。这些是半随机图进程的第一个结果,当$ \ mathcal {p} $对应于包含稀疏的跨度图时,它显示了尖锐的阈值。使用单独的分析参数,我们表明每个尖锐的阈值都是$ c _ {\ Mathcal {p}} n $的形式,对于某些固定常数$ c _ {\ Mathcal {p}}}> 0 $。这回答了Ben-Eliezer等人提出的两个开放问题。 (2020年苏打水)肯定。与为某些分布和属性建立尖锐阈值的类似结果不同,我们在没有明确识别渐近最佳策略的情况下建立了尖锐阈值的存在。
The $\mathcal{D}$-process is a single player game in which the player is initially presented the empty graph on $n$ vertices. In each step, a subset of edges $X$ is independently sampled according to a distribution $\mathcal{D}$. The player then selects one edge $e$ from $X$, and adds $e$ to its current graph. For a fixed monotone increasing graph property $\mathcal{P}$, the objective of the player is to force the graph to satisfy $\mathcal{P}$ in as few steps as possible. Through appropriate choices of $\mathcal{D}$, the $\mathcal{D}$-process generalizes well-studied adaptive random graph processes, such as the Achlioptas process and the semi-random graph process We prove a sufficient condition for the existence of a sharp threshold for $\mathcal{P}$ in the $\mathcal{D}$-process. For the semi-random process, we use this condition to prove the existence of a sharp threshold when $\mathcal{P}$ corresponds to being Hamiltonian or to containing a perfect matching. These are the first results for the semi-random graph process which show the existence of a sharp threshold when $\mathcal{P}$ corresponds to containing a sparse spanning graph. Using a separate analytic argument, we show that each sharp threshold is of the form $C_{\mathcal{P}}n$ for some fixed constant $C_{\mathcal{P}}>0$. This answers two of the open problems proposed by Ben-Eliezer et al. (SODA 2020) in the affirmative. Unlike similar results which establish sharp thresholds for certain distributions and properties, we establish the existence of sharp thresholds without explicitly identifying asymptotically optimal strategies.