论文标题

重生相变,黑洞和空间维度

Gravothermal Phase Transition, Black Holes and Space Dimensionality

论文作者

Feng, Wei-Xiang

论文摘要

在理想的单变性流体的重生体演变框架中,我通过将Chandrasekhar的标准借到Evolution sequence sequence of($ n $+1)维度($ n $+1)维度的动力不稳定性。一旦触发了不稳定性,如果没有其他相互作用阻止该过程,它可能会倒入黑洞。从这个角度来看,(3+1) - 维时空的特权是明显的,因为它是理想的单变性流体稳定但不太稳定的边际维度。此外,正是独特的维度允许稳定的静水平衡,并具有正宇宙常数。虽然所有更高的维度($ n> 3 $)球体确实是不稳定的。相反,在(2+1)维度时空中,在牛顿的重力理论或爱因斯坦的一般相对论的背景下,它太稳定了。众所周知,负宇宙常数的作用对于拥有Bañados-teitelboim-Zanelli(BTZ)黑洞溶液和流体磁盘的平衡构型至关重要。由于宇宙常数的消极性,均匀的流体磁盘没有不稳定的配置,可以塌陷成赤裸的奇异性,这支持了宇宙审查的猜想。但是,质量$ \ MATHCAL {M} _ {\ rm BTZ}> 0 $的BTZ孔可能会从崩溃的流体磁盘中出现。短暂讨论了时空维度的含义。

In the framework of gravothermal evolution of an ideal monatomic fluid, I examine the dynamical instability of the fluid sphere in ($N$+1) dimensions by exploiting Chandrasekhar's criterion to each quasistatic equilibrium along the sequence of the evolution. Once the instability is triggered, it would probably collapse into a black hole if no other interaction halts the process. From this viewpoint, the privilege of (3+1)-dimensional spacetime is manifest, as it is the marginal dimensionality in which the ideal monatomic fluid is stable but not too stable. Moreover, it is the unique dimensionality that allows stable hydrostatic equilibrium with positive cosmological constant. While all higher dimensional ($N>3$) spheres are genuinely unstable. In contrast, in (2+1)-dimensional spacetime it is too stable either in the context of Newton's theory of gravity or Einstein's general relativity. It is well known that the role of negative cosmological constant is crucial to have the Bañados-Teitelboim-Zanelli (BTZ) black hole solution and the equilibrium configurations of a fluid disk. Owing to the negativeness of the cosmological constant, there is no unstable configuration for a homogeneous fluid disk to collapse into a naked singularity, which supports the cosmic censorship conjecture. However, BTZ holes of mass $\mathcal{M}_{\rm BTZ}>0$ could emerge from collapsing fluid disks. The implications of spacetime dimensionality are briefly discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源