论文标题

Gogreen调查:以$ \ boldsymbol {z} \ gtrsim 1 $限制大型簇中的卫星淬火时间尺度

The GOGREEN Survey: Constraining the Satellite Quenching Timescale in Massive Clusters at $\boldsymbol{z} \gtrsim 1$

论文作者

Baxter, Devontae, Cooper, Michael, Balogh, Michael, Carleton, Tim, Cerulo, Pierluigi, De Lucia, Gabriella, Demarco, Ricardo, McGee, Sean, Muzzin, Adam, Nantais, Julie, Castro, Irene Pintos, Reeves, Andrew, Rudnick, Gregory, Sarron, Florian, van der Burg, Remco, Vulcani, Benedetta, Wilson, Gillian, Zaritsky, Dennis

论文摘要

我们通过组合$ 14 $ smostive($ 10^{13.8} <m _ {\ mathrm {halo}}/\ mathrm {m} _ {\ odot} <10^{15^15} $ 0.8 <z <z <z <z <z <z <z <z <z <z <z <z <z <z <z <z <z <z < $ 56 $ Redshift匹配的类似物来自Illustristng模拟。 Our fiducial model, which is parameterized by the satellite quenching timescale ($τ_{\rm quench}$), accounts for quenching in our simulated satellite population both at the time of infall by using the observed coeval field quenched fraction and after infall by tuning $τ_{\rm quench}$ to reproduce the observed satellite quenched fraction versus stellar质量趋势。该模型成功地重现了观察到的卫星淬灭分数作为恒星质量的函数(按结构),预测的以群集为中心的半径和红移,并且与观察到的场和群集恒星质量功能在$ z \ sim 1 $一致。我们发现,卫星淬火时间尺度是大规模依赖的,与以前的低和中间红移的一些研究相抵触。在稳定的质量范围内($ M _ {\ Star}> 10^{10}〜\ \ \ \ \ Mathrm {M} _ {\ odot} $),我们发现卫星淬火时间表随着$ \ sim1.6〜 {\ sim1.6〜 {\ rm rm gyr} $ rm gyr} $ rm gyr}的增加而减少$ 10^{10}〜\ Mathrm {m} _ {\ odot} $ to $ \ sim 0.6-1〜 {\ rm gyr} $ at $ 10^{11}}〜\ mathrm {m} _ {m} _ {\ odot} $,并且与总的冷气($} $一致(中级$ z $的DEPTETION TIMESCALES表明,饥饿可能是$ z <2 $的环境淬火的主要驱动力。最后,尽管环境机制在淬灭大量卫星方面相对有效,但我们发现超大型卫星的大多数($ \ sim65-80 \%$)($ m _ {\ star}> 10^{11}}}}}〜\ mathrm {mathrm {m {m} _ {\ odot} _ {\ odot} $ quench

We model satellite quenching at $z \sim 1$ by combining $14$ massive ($10^{13.8} < M_{\mathrm{halo}}/\mathrm{M}_{\odot} < 10^{15}$) clusters at $0.8 < z < 1.3$ from the GOGREEN and GCLASS surveys with accretion histories of $56$ redshift-matched analogs from the IllustrisTNG simulation. Our fiducial model, which is parameterized by the satellite quenching timescale ($τ_{\rm quench}$), accounts for quenching in our simulated satellite population both at the time of infall by using the observed coeval field quenched fraction and after infall by tuning $τ_{\rm quench}$ to reproduce the observed satellite quenched fraction versus stellar mass trend. This model successfully reproduces the observed satellite quenched fraction as a function of stellar mass (by construction), projected cluster-centric radius, and redshift and is consistent with the observed field and cluster stellar mass functions at $z \sim 1$. We find that the satellite quenching timescale is mass dependent, in conflict with some previous studies at low and intermediate redshift. Over the stellar mass range probed ($M_{\star}> 10^{10}~\mathrm{M}_{\odot}$), we find that the satellite quenching timescale decreases with increasing satellite stellar mass from $\sim1.6~{\rm Gyr}$ at $10^{10}~\mathrm{M}_{\odot}$ to $\sim 0.6 - 1~{\rm Gyr}$ at $10^{11}~\mathrm{M}_{\odot}$ and is roughly consistent with the total cold gas (H{\scriptsize I}+H$_{2}$) depletion timescales at intermediate $z$, suggesting that starvation may be the dominant driver of environmental quenching at $z < 2$. Finally, while environmental mechanisms are relatively efficient at quenching massive satellites, we find that the majority ($\sim65-80\%$) of ultra-massive satellites ($M_{\star} > 10^{11}~\mathrm{M}_{\odot}$) are quenched prior to infall.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源