论文标题

$ k_r $的小直径子图的密度 - free图

Density of small diameter subgraphs in $K_r$-free graphs

论文作者

Hng, Eng Keat, Cecchelli, Domenico Mergoni

论文摘要

我们用$ \ text {ex}(n,h,f)$表示不包含$ f $作为子图的$ h $的$ h $的最大副本数量。最近,Grzesik,Győri,Salia,Tompkins考虑了$ h $的条件,根据该条件,$ \ text {ex}(n,h,h,k_r)$在$ k_ {r-1} $的爆炸中均非实现,并提出了猜想。在本说明中,我们反驳了他们的猜想。

We denote by $\text{ex}(n, H, F)$ the maximum number of copies of $H$ in an $n$-vertex graph that does not contain $F$ as a subgraph. Recently, Grzesik, Győri, Salia, Tompkins considered conditions on $H$ under which $\text{ex}(n, H, K_r)$ is asymptotically attained at a blow-up of $K_{r-1}$, and proposed a conjecture. In this note we disprove their conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源