论文标题
慢慢地卷曲collet-eckmann用非空的fatou套件地图
Slowly recurrent Collet-Eckmann maps with non-empty Fatou set
论文作者
论文摘要
在本文中,我们研究了朱莉娅集合不是整个领域的理性夹式 - ceckmann地图,临界点以缓慢的速度复发。在固定临界点的命令的家庭中,我们证明了此类地图是双曲线图的Lebesgue密度点。特别是,如果所有关键点都很简单,则它们是勒布斯格密度点的密度点,在任何程度的理性地图$ d \ geq 2 $的完整空间中。
In this paper we study rational Collet-Eckmann maps for which the Julia set is not the whole sphere and for which the critical points are recurrent at a slow rate. In families where the orders of the critical points are fixed, we prove that such maps are Lebesgue density points of hyperbolic maps. In particular, if all critical points are simple, they are Lebesgue density points of hyperbolic maps in the full space of rational maps of any degree $d \geq 2$.