论文标题
预先训练语言模型的可解释性评估基准
An Interpretability Evaluation Benchmark for Pre-trained Language Models
论文作者
论文摘要
尽管预训练的语言模型(LMS)在许多NLP任务中都取得了重大改进,但人们越来越关注探索LMS的能力并解释其预测。但是,现有作品通常仅着眼于某些下游任务的特定功能。缺乏直接评估蒙版单词预测性能和预训练LMS的解释性的数据集。为了填补空白,我们提出了一个新颖的评估基准,可提供英语和中文注释的数据。它在多个维度(即语法,语义,知识,推理和计算)中测试LMS能力。此外,它提供了满足足够和紧凑性的仔细注释的令牌级别的理由。它包含每个原始实例的扰动实例,以便将扰动下的基本原理一致性用作忠实的指标,一种解释性的观点。我们在几个广泛使用的预训练的LMS上进行实验。结果表明,它们在知识和计算的维度上表现较差。而且它们在所有维度上的合理性远非令人满意,尤其是当理由缩短时。另外,我们评估的预训练的LMS在语法感知数据上并不强大。我们将以\ url {http:// xyz}发布此评估基准,并希望它可以促进预训练的LMS的研究进度。
While pre-trained language models (LMs) have brought great improvements in many NLP tasks, there is increasing attention to explore capabilities of LMs and interpret their predictions. However, existing works usually focus only on a certain capability with some downstream tasks. There is a lack of datasets for directly evaluating the masked word prediction performance and the interpretability of pre-trained LMs. To fill in the gap, we propose a novel evaluation benchmark providing with both English and Chinese annotated data. It tests LMs abilities in multiple dimensions, i.e., grammar, semantics, knowledge, reasoning and computation. In addition, it provides carefully annotated token-level rationales that satisfy sufficiency and compactness. It contains perturbed instances for each original instance, so as to use the rationale consistency under perturbations as the metric for faithfulness, a perspective of interpretability. We conduct experiments on several widely-used pre-trained LMs. The results show that they perform very poorly on the dimensions of knowledge and computation. And their plausibility in all dimensions is far from satisfactory, especially when the rationale is short. In addition, the pre-trained LMs we evaluated are not robust on syntax-aware data. We will release this evaluation benchmark at \url{http://xyz}, and hope it can facilitate the research progress of pre-trained LMs.