论文标题

解决生育链的泊松方程:结构,不稳定和准确的近似

Solving Poisson's equation for birth-death chains: Structure, instability, and accurate approximation

论文作者

Niño-Mora, José

论文摘要

Poisson的方程式是马尔可夫链性能评估和优化的工具的基本角色。对于本文所述的连续时间出生死亡链,可能是无界的过渡和成本率,当分析解决方案不可用时,可以通过简单的远期复发来获得其数值溶液。然而,这可能会遭受数值不稳定的困扰,可以隐藏精确解决方案的结构。本文提出了三个主要贡献:(1)在轻度条件和成本率的轻度条件下,它建立了结构性结果(相对成本函数的凸)(相对成本函数的凸),这与马尔可夫决策模型中最佳政策的结构特性有关; (2)它通过标准的正向复发阐明了数值溶液中不稳定性的根本原因,程度和流行率; (3)它提出了一种新型的前向后复发方案,以计算准确的数值解决方案。结果应用于对偏差和渐近方差的准确评估,并在一个示例中进行了说明。

Poisson's equation plays a fundamental role as a tool for performance evaluation and optimization of Markov chains. For continuous-time birth-death chains with possibly unbounded transition and cost rates as addressed herein, when analytical solutions are unavailable its numerical solution can in theory be obtained by a simple forward recurrence. Yet, this may suffer from numerical instability, which can hide the structure of exact solutions. This paper presents three main contributions: (1) it establishes a structural result (convexity of the relative cost function) under mild conditions on transition and cost rates, which is relevant for proving structural properties of optimal policies in Markov decision models; (2) it elucidates the root cause, extent and prevalence of instability in numerical solutions by standard forward recurrence; and (3) it presents a novel forward-backward recurrence scheme to compute accurate numerical solutions. The results are applied to the accurate evaluation of the bias and the asymptotic variance, and are illustrated in an example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源