论文标题

快速争夺Kerr-Ads中的共同信息$ _4 $

Fast Scrambling of Mutual Information in Kerr-AdS$_4$

论文作者

Malvimat, Vinay, Poojary, Rohan R.

论文摘要

我们计算左右CFT $ s $ s $ a ads_4 $的左右CFT $ s $在左右CFT $ s $ s $ ads_4 $中描述的左右CFT $ s $之间的相互信息的破坏。冲击波和子系统认为尊重几何形状的公理对称。在后期,相互信息的破坏是通过连接两个子系统的HRT表面的延长来给出的,我们计算了Lyapunov index- $λ_l^{(min)} $的最低值,并在$ brac = \ frac {2πt_H} $ wher $μ$是地平线速度,$ \ MATHCAL {l} $是冲击波每单位能量的角动量。在很晚的时间里,我们发现此类系统的争夺时间由$κ$,$κT_*= \ log \ Mathcal {s} $用于带有大熵$ \ MATHCAL {s} $的大型黑洞。我们还找到一个术语,该术语通过$ \ log(1-μ\,\ mathcal {l})^{ - 1} $增加了乱伦时间,但不会随Kerr几何形状的熵扩展。

We compute the disruption of mutual information between the hemispherical subsystems on the left and right CFT$s$ of a Thermofield Double state described by a Kerr geometry in $AdS_4$ due to shockwaves along the equatorial plane. The shockwaves and the subsystems considered respect the axi-symmetry of the geometry. At late times the disruption of the mutual information is given by the lengthening of the HRT surface connecting the two subsystems, we compute the minimum value of the Lyapunov index-$λ_L^{(min)}$ at late times and find that it is bounded by $κ=\frac{2πT_H}{(1-μ\, \mathcal{L})}$ where $μ$ is the horizon velocity and $\mathcal{L}$ is the angular momentum per unit energy of the shockwave. At very late times we find the the scrambling time for such a system is governed by $κ$ with $κt_*=\log \mathcal{S}$ for large black holes with large entropy $\mathcal{S}$. We also find a term that increases the scrambling time by $\log(1-μ\,\mathcal{L})^{-1}$ but which does not scale with the entropy of the Kerr geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源