论文标题
在二元组上的简单超悬式L-acte
Simple supercuspidal L-packets of symplectic groups over dyadic fields
论文作者
论文摘要
我们考虑符号组$ \ mathrm {sp} _ {2n} $在$ p $ -Adic field $ f $上定义,其中$ p = 2 $。我们证明,每一个简单的超级质量表示(从$ \ mathrm {sp} _ {2n}(f)$的$ \ mathrm {sp} _ {2n}(f)$对应于本地langlands在本地Langlands通信下的不可约$ l $ -parameter,$ \ \ \ \ \ \ \ \ \ sprm {sp} _ _ {2n} $由Arthur arthur arthur。
We consider the symplectic group $\mathrm{Sp}_{2n}$ defined over a $p$-adic field $F$, where $p=2$. We prove that every simple supercuspidal representation (in the sense of Gross--Reeder) of $\mathrm{Sp}_{2n}(F)$ corresponds to an irreducible $L$-parameter under the local Langlands correspondence for $\mathrm{Sp}_{2n}$ established by Arthur.