论文标题

$ \ varepsilon $ factorized形式的三环相等香蕉积分与meromorphic模块化形式

The three-loop equal-mass banana integral in $\varepsilon$-factorised form with meromorphic modular forms

论文作者

Pögel, Sebastian, Wang, Xing, Weinzierl, Stefan

论文摘要

我们表明,三环平等香蕉积分的微分方程可以被施加到$ \ varepsilon $ factorized形式中,并带有从(Meromormorphic)模块化模块化形式构造的条目和一种特殊功能,可以作为Meromormormorphic Modular形式的迭代积分给出。微分方程的$ \ varepsilon $ - 捕集形式允许在尺寸正则化参数$ \ varepsilon $中对任何顺序进行系统的解决方案。迭代积分的字母包含六个字母。

We show that the differential equation for the three-loop equal-mass banana integral can be cast into an $\varepsilon$-factorised form with entries constructed from (meromorphic) modular forms and one special function, which can be given as an iterated integral of meromorphic modular forms. The $\varepsilon$-factorised form of the differential equation allows for a systematic solution to any order in the dimensional regularisation parameter $\varepsilon$. The alphabet of the iterated integrals contains six letters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源