论文标题
Erdős$ - $ McKay猜想的两分版本
A bipartite version of the Erdős $-$ McKay conjecture
论文作者
论文摘要
一个旧的猜想和麦凯(McKay)指出,如果所有均匀的集合中的所有均值集均为$ o(\ log n)$的顺序,则该图包含每个大小的诱导子图,从$ \ \ {0,1,\ ldots,ω(n^2)$。我们证明了猜想的两分类模拟:如果在$ n \ times n $ bipartite图中以$ o(\ log n)$为单位的所有平衡均质集,则该图包含$ \ \ {0,1,\ ldots,ω(n^2)$的每个大小的诱导子图。
An old conjecture of Erdős and McKay states that if all homogeneous sets in an $n$-vertex graph are of order $O(\log n)$ then the graph contains induced subgraphs of each size from $\{0,1,\ldots, Ω(n^2)\}$. We prove a bipartite analogue of the conjecture: if all balanced homogeneous sets in an $n \times n$ bipartite graph are of order $O(\log n)$ then the graph contains induced subgraphs of each size from $\{0,1,\ldots, Ω(n^2)\}$.