论文标题
量化高斯通道中的量子相关性
Quantifying quantum correlations in noisy Gaussian channels
论文作者
论文摘要
高斯州是量子信息处理的许多任务中的重要成分。噪音的存在对实现这些量子方案的限制施加了局限性。因此,在高斯州在嘈杂的通道中,检查量子纠缠和量子相关性的演变至关重要。在本文中,我们提出并分析了一种旨在指定和检查两种模型高斯州量子相关的动态演化的方案,该量子相关性的动态演变提交给高斯热环境的影响。我们描述了一个开放系统中量子相关性的时间演变,该系统由嵌入高斯热环境中的两个耦合的玻感模式组成。我们根据输入状态的初始参数讨论环境的影响。使用高斯干涉能力和形成的高斯纠缠来量化量子相关性。这些量子相关量词的行为严格取决于所使用的输入状态的参数。我们表明,高斯干涉能力是一种测量量词,可以捕获量子纠缠以外的基本量子相关性。此外,我们表明高斯的干涉能力比高斯纠缠的影响较小。
The Gaussian states are essential ingredients in many tasks of quantum information processing. The presence of the noises imposes limitations on achieving these quantum protocols. Therefore, examining the evolution of quantum entanglement and quantum correlations under the coherence of Gaussian states in noisy channels is of paramount importance. In this paper, we propose and analyze a scheme that aims to specify and examine the dynamic evolution of the quantum correlations in two-modes Gaussian states submitted to the influence of the Gaussian thermal environment. We describe the time evolution of the quantum correlations in an open system consisting of two coupled bosonic modes embedded in a Gaussian thermal environment. We discuss the influence of the environment in terms of the initial parameters of the input states. The quantum correlations are quantified using Gaussian interferometric power and the Gaussian entanglement of formation. The behavior of these quantum correlations quantifiers is strictly dependent on the parameters of the input states that are employed. We show that the Gaussian interferometric power is a measurement quantifier that can capture the essential quantum correlations beyond quantum entanglement. In addition, we show that the Gaussian interferometric power is less influenced than the Gaussian entanglement of formation.