论文标题
奇异的pöschl-teller II电位和引力扭结
Singular Pöschl-Teller II potentials and gravitating kinks
论文作者
论文摘要
我们报告了一个二维(2D)引力的扭结模型,为此,背景场方程和线性扰动方程都是可解决的。背景解决方案描述了一个正弦的扭结,该扭结在两个渐近广告$ _2 $空间之间插值,并且可以被视为2D厚的Brane World解决方案。线性扰动方程可将其重新铸造到具有单个Pöschl-Teller II电位的Schrödinger方程中。光谱中没有速度状态,因此该溶液在线性扰动上是稳定的。此外,可以有$ n = 0,1,2,\ cdots $界面模式周围的振动模式。这些振动模式的数量随模型参数而变化。
We report a two-dimensional (2D) gravitating kink model, for which both the background field equations and the linear perturbation equation are exactly solvable. The background solution describes a sine-Gordon kink that interpolating between two asymptotic AdS$_2$ spaces, and can be regarded as a 2D thick brane world solution. The linear perturbation equation can be recasted into a Schrödinger-like equation with singular Pöschl-Teller II potentials. There is no tachyonic state in the spectrum, so the solution is stable against the linear perturbations. Besides, there can be $n=0,1,2,\cdots$ bounded vibrational modes around the kink. The number of these vibrational modes varies with model parameters.