论文标题
多晶材料的几何建模:拉瓜塞尔和周期性的半污物最佳运输
Geometric modelling of polycrystalline materials: Laguerre tessellations and periodic semi-discrete optimal transport
论文作者
论文摘要
在本文中,我们描述了一种快速算法,用于生成多晶材料的周期性rves。特别是,我们使用从半污染的最佳运输理论中的牛顿方法来生成带有给定体积的细胞的3D周期性laguerre tessellations(或功率图)。可以在几分钟的标准笔记本电脑上创建复杂的,多达100,000粒的规定量的复合物。阻尼的牛顿方法依赖于目标函数的Hessian,我们通过将半分化最佳运输理论的最新结果扩展到周期性环境来得出。
In this paper we describe a fast algorithm for generating periodic RVEs of polycrystalline materials. In particular, we use the damped Newton method from semi-discrete optimal transport theory to generate 3D periodic Laguerre tessellations (or power diagrams) with cells of given volumes. Complex, polydisperse RVEs with up to 100,000 grains of prescribed volumes can be created in a few minutes on a standard laptop. The damped Newton method relies on the Hessian of the objective function, which we derive by extending recent results in semi-discrete optimal transport theory to the periodic setting.